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Abstract 

An analytical model is presented to examine the performance of 
multiple tuned mass dampers (MTMD) for the long span bridges 
subjected to wind excitation. The reduction of dynamic response and 
the increase of the flutter velocity by the attachment of the MTMD to 
the bridge are discussed. Through a parametric analysis, the 
characteristics of MTMD are studied and the design parameters 
including mass, damping, bandwidth, and total number of TMDs are 
proposed. A comparison of effectiveness between a single TMD and 
MTMD is also presented in this paper. The results indicate that the 
MTMD, designed with the recommended parameters, is not only more 
effective but also more robust than the usual single TMD against 
wind-induced vibration. The superior robustness of the MTMD is 
especially significant in the torsional direction. 
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1. Introduction 
 

The developments of vibration control theories 
have led to the wide use of tuned mass dampers on 
many engineering structures such as tall buildings, 
long-span bridges, and so on. Installing a TMD on a 
long-span bridge has been proven to be effective for 
suppressing wind-induced vibrations both 
analytically and experimentally [2-4]. In recent years, 
the design concept of a TMD is extended to multiple 
tuned mass dampers (MTMD) which are composed 
of several small oscillators attached to the main 
structure [1,5,8]. The main idea of this design is to 
distribute the natural frequencies of MTMD around 
the natural frequency of the suppressed mode of the 
structure for lessening the resonant effects. From the 
previous studies [1,5,8], we found that MTMD is less 
sensitive to the offset of the tuning frequency than a 
single TMD, and the mass of each TMD can be made 
smaller. The latter is specially important for large 
structures, because the massive size of the damper 
may cause difficulties with bridge construction and 
maintenance.  

The theories of MTMD have been discussed 
extensively by some researchers [1,5,8], which have 
provided design formulas and recommendations in 
their papers. However, those formulas were 

primarily derived for general engineering structures 
and may not be directly used for flexible bridges 
subjected to wind excitation. For the involvement of 
aerodynamic damping and aerodynamic stiffness, 
the wind-induced response of the long-span bridge 
is somewhat more complex than that of general 
structures subjected to the harmonic loads. 
Furthermore, the assumption of treating wind loads 
as white noise, adopted in some papers [5], is not 
completely valid, because the contribution of the 
background part to the total response can not be 
ignored in most cases. Hence, further studies of 
wind-induced vibration control of flexible bridges 
by the MTMD are still needed. 

In this paper an analytical model is presented 
to examine the performance of the MTMD used in 
the long-span bridge. The dynamic response 
reduction and the increase of the flutter velocity of 
the flexible bridge are discussed. A cable-stayed 
bridge subjected to buffeting is chosen as the target 
for evaluating the performance of the MTMD in this 
analysis. Then, the design parameters of the MTMD 
are proposed through this parametric study.  

2. Formulations of Equations of Motion 
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Fig. 1 Bridge - MTMD system 

 
The vertical or torsional motion of the long-span 
bridge is generally dominated by the structure’s first 
mode in that direction. Hence, it is possible to 
model the bridge as a single degree of freedom 
(SDOF) system and each TMD of the MTMD is 
also modeled as a SDOF system. Provided that 
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Fig.2 Finite element model of bridge deck subjected to 

wind loads 
there are N TMDs used in the structure, then the 
bridge-MTMD system, shown in Fig. 1, oscillates 
with N +1 degrees of freedom. The equations of 
motion of the structural model can be expressed in 
the generalized coordinate system as  
 

ex
T

se
T FΦFΦ +=−++−++ ∑∑∑∑

====
i

N

i
is

N

i
isi

N

i
is

N

i
isss uKuKKuCuCCuM

1111

)()( &&&& (1)

  
M u C u C u K u K u i Ni i i s i i i s i i&& & & ( , )− + − + = =0 1 (2)

  
where u is the generalized displacement, M, C, and 
K are respectively the generalized mass, damping,  
and stiffness, Φ  is the matrix containing the first 
mode of the bridge, Fse is the self-excited force 
matrix and Fex is the buffeting force matrix. The 
subscript s stands for the bridge and i for the ith 
TMD. Let φ (xi) be the component of Φ  at the 
coordinate xi where the ith TMD is located. Then, 
the expressions of Ms and Mi are known as 

MΦΦT=sM                                                      (3) 

M x mi i i= φ 2 ( )                                                                 (4) 
 
where M is the mass matrix of the bridge and mi is 

the mass of the ith TMD. The other properties such 
as damping and stiffness are defined in a similar 
manner.  
       The widely accepted forms of the self-excited 
forces, expressed by the flutter derivatives, were 
proposed by Scanlan and Tomko [6]. These forms 
are adopted here to represent the interaction 
between fluid and structure.  Since only vertical and 
torsional responses are concerned, the drag force is 
ignored. The self-excited forces acting on deck 
node j in vertical direction l

seF and in torsion 
direction t

seF  are in the following forms: 
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where ρis air density, U is wind velocity, B is deck 

width, K B
U

=
ω

 is the reduced frequency, ∆Lj  is 

the tributary length of the node j (shown in Fig. 2), 
y,α are the vertical and torsional displacements, 
respectively, H Al l

* *,  (l=1,3) are the flutter 
derivatives. In this study the bridge deck is assumed 
insensitive to the aerodynamic coupling, the 
coupling terms in Eqs. (5)-(6) are neglected. Thus, 
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Eqs. (5)-(6) can be simplified as  
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Substituting Eq. (7) or (8) into (1) and making some 
manipulations, we can rewrite the equations of 
motion as follows: 
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where ξ i , ω i  are the damping ratio and circular 
frequency of the ith TMD, respectively, µ i is the 
generalized mass ratio of the ith TMD to the bridge, 
ξ s ,ω s  are the effective damping and the effective 
frequency of the bridge, respectively. The 
mathematical form of µ i is shown in the following: 
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If the vertical response is considered, the 
mathematical expressions of ω s  and ξ s  can be 
stated as 
ω ωs s=                                                              (12) 
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If the torsional response is considered, the 
mathematical forms of ω s  and ξ s  can be 
expressed by 
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To solve Eqs. (9) and (10), the complex forms of the 
generalized displacements and the external force are 
used 
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The transfer functions of the bridge and the ith 
TMD are then derived by substituting Eqs. (16)-(18) 
into (9)-(10) and setting the generalized force to be 
unity. If we define 
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then, the transfer function of the bridge can be 
stated as: 

H M
Z i Zs

s s( ) ( )
Re( ) Im( )

ω ω
=

+

1
2

                                 (23) 

where Re(Z) and Im(Z) are defined by 
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Also, the transfer function of the ith TMD are 
obtained as 
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These results are identical to those derived by 
Yamaguchi & Harnpornchai [8] except that the 



Yuh-Yi Lin, Chii-Ming Cheng and David Sun: Wind - Induced Vibration Control of Long - Span Bridges  
by Multiple Tuned Mass Dampers 

 

9

damping ratioξ s and the frequency ω s  are replaced 

by the effective damping ξ s and the effective 
frequency ω s  in this study. 
 

3.  Buffeting Response 
 
       As the buffeting response is considered, the 
external force term Fex in Eq. (1) is substituted by 
the vertical or torsional buffeting force that is 
well-known as [7] 
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where CL, CD, and CM are respectively the lift, drag, 
and moment coefficients, u and w are the wind 
speed fluctuations in horizontal and vertical 
directions, respectively. It should be noted that the 
response calculation is based on the first structural 
mode in either vertical or torsional direction, only 
one mode is taken into account for the analysis. 
 Using the random theory and wind velocity spectra, 
we can obtain the co-spectrum of buffeting forces 
between deck node p and q, which is denoted 
by SF F

C
p q

. The generalized force spectrum SF  is 

then obtained  
S x x SF

p q
p q F F

C
p q

= ∑∑φ φ( ) ( )                               (29)  

The displacement spectrum of the bridge at node j is 
in the following form: 
S x x S Hd j j F s( ) ( ) ( )= φ ω2 2                           (30) 
 
Similarly, the displacement spectrum of the ith 
TMD is expressed by 
S x x S Hid i i F i( ) ( ) ( )= φ ω2 2                             (31) 
 
Integrating Eqs.(30) and (31) with the frequency w, 

we can obtain the mean square of the response of the 
bridge at node j 
σ ωs j d jx S x d2

0( ) ( )= ∫
∞                                      (32) 

 
Also, the variance of the response of the ith TMD 
can be calculated from the following equation: 
σ ωi i id ix S x d2

0( ) ( )= ∫
∞                                        (33) 

 
4.  Evaluation of Fluttervelocity 

 
        The main objective of using TMD or MTMD 
is to suppress excessive response induced by 
buffeting. In addition, an accompanying effect is the 
increase of the flutter velocity especially for the 
torsion-resistant dampers. When the torsional 
resistance of the bridge system is concerned, the use 
of MTMD not only can reduce the torsional 
response but increase the critical velocity. In 
general, the motion of the bridge is reasonably 
assumed to be both structurally and 
aerodynamically uncoupled, flutter in this case will 
be “single-degree-of-freedom flutter”. Since this 
type of flutter is dominated by the first torsional 
mode, the flutter analysis based on the equations of 
motions shown in Eqs.(9)-(10) is plausible.  
       We consider Eqs. (9) and (10) and drop the 
external force term in Eq. (9), because the  external 
force is not relevant to the flutter analysis. Then, by 
substituting Eqs. (17)-(18) into this system of 
equations, a complex eigen-value problem is 
yielded and can be stated in a matrix form 
 
[ ] [ ]( ){ }G A− =λ 0                                           (34) 

 
where [G] is a square matrix with rank of N+1, 
[λ]is a diagonal matrix with rank of N+1, {A} is an 
amplitude matrix. The definitions of these matrices 
are
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The square root of the eigenvalue obtained from Eq. 
(34) is the frequency in a complex form. The ratio of 
the imaginary part to the real part of this frequency 
is interpreted as the total damping of the structural 
system. The total damping is contributed by the 
bridge itself, MTMD, and aerodynamics. At some 
wind velocity, when the damping being zero, the 
structural response will approach infinity, that is, 
flutter will occur. The corresponding wind speed is 
called the “flutter velocity”, and the real part of the 
frequency is called “flutter frequency”. It is noted 
that Eq. (34) should be solved by iteration for each 
wind speed, because the matrix [G] consists of the 
unknown  The iterative calculation generally can 　
yield a convergent solution by using an appropriate 
initial value and a reliable convergence criterion. 
 

5.  Parametric Analysis 
 
       The structure used in this study is a cable 
-stayed bridge. The bridge has a total span of 1460m 
and a width of 21.5m. Two 200-m-high towers are 
supported by cables. A finite element model, 
consisted of beam elements and cable elements, is 
used to calculate the natural frequencies of the 
structure. The geometry of this bridge is shown in 
Fig.3. Through the calculation, the natural 
frequencies of the first vertical mode and the first 
torsional mode are 0.141Hz and 0.354Hz, 
respectively. The flutter derivatives *

1H and *
iA ( i = 

2,3), modified from Scanlan and Tomko [6], are 
shown in Fig.4. The drag, lift, and torsion 
coefficients CD , CL , and CM , used for buffeting 
calculations, are adopted from reference [9] and 
shown in Fig. 5. The roughness length of 1.2m is 
used.  The mass and the damping ratio of each TMD 
are assumed the same for practical reasons. Since 
the TMDs are closely mounted on the bridge deck, 
the location of each TMD connected to the bridge 
deck can be theoretically assumed the same without 

any huge error. In this analysis the design 
parameters of the MTMD include the total mass 
ratio, the damping ratio, the number of TMDs, and 
the frequency bandwidth. To account for the 
mistuning problem, the effect of offset is also 
considered. The performance of a TMD will 
increase in proportion to the mass ratio. Generally 
mass ratios less than 1% or larger than 4 % would be 
too light or too heavy for practical purposes. 
Therefore, the range of total mass ratio of the TMDs 
is chosen from 1% to 4%. The damping ratio range 
of the TMDs is chosen from 1% to 7%. The total 
number of TMDs is related to the bandwidth of the 
MTMD, and the ranges of these parameters are 
studied from 1 to 21 and from 0.1 to 0.5, 
respectively.  
 
(1) Performance of the MTMD for Suppressing 

Vertical Buffeting Response 
 
      Since the characteristics of MTMD in the 
vertical direction will generally not vary with the 
wind velocity, the following studies are investigated 
at a single wind speed only. 
 
(a) Effect of damping ratio 
 
      When 1% total mass ratio is used, the 
relationship of the damping ratio and response 
reduction ratio for various numbers of TMDs is 
shown in Fig.6. For a single TMD, the performance 
increases with the damping ratio and reaches the 
maximum at 5% damping ratio. This result is 
coincident with that in previous studies [3]. For the 
MTMD the result is quite different. The response 
reduction ratio sharply increases to its optimum at a 
low damping ratio and then slowly decreases as the 
damping ratio increases. The comparison of the 
results indicates that the performance of the MTMD 
is somewhat better than that of the single TMD. 
This conclusion can be expected because the 
frequency range of the displacement spectrum at the 
resonant part is wide band, which results in the 
superiority of the MTMD. We can also conclude 
that with larger number of TMDs, the smaller is the 
optimum damping ratio. However, this tendency 
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will not be obvious when the number of TMDs is 
more than 9. For design purposes, the damping ratio 
should be selected on the safe side, that is, the 
preferred value is the one that is larger than the 
optimum. By inspection from Fig. 6, we can suggest 
that 2% damping is appropriate for the MTMD with 
1% total mass ratio.  
 

(b) Effect of bandwidth 
 
      The bandwidth is one of the important design 
parameters of MTMD. It designates the range of the 
distributed frequencies of TMDs and is defined here 
as the ratio of the difference of the maximum and 
the minimum frequencies of the TMDs to the 
structural frequency. Fig. 7 shows the response  

320 m 820 m 320 m

200 m

10 m

1460 m  
Fig 3 Geometry of the cable-stayed bridge 
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(d) n=13 
Fig. 13 Response reduction ratio versus offset at 60 

m/s wind speed (a) n=3 (b) n=5 (c) n=9 (d) n=13 

Fig. 14 Comparison of robustness between 9 TMDs
      and a single TMD in torsional direction 

(a) n=3 

(b) n=5 

(c) n=9 Fig. 15 Response reduction ratio versus effective
          structural damping for different mass ratios
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Table 1 Suggested bandwidth for different number of TMDs 
no. of TMDs lower bound ( Bn

min  ) Suggested value ( Bn  ) upper bound ( Bn
max  ) 

3 0.07 0.1 0.15 
5 0.09 0.15 0.20 
9 0.11 0.2 0.24 

13 0.11 0.2 0.25 
21 0.12 0.2 0.25 

Table 2 Flutter velocity of the bridge 
Flutter velocity w/o TMDs = 68.33 ( m/sec ) 

N = no. of TMDs； B = bandwidth；D=damping ratio 
µ  = total generalized mass ratio；(    ) = increase of the flutter velocity in percent 

 µ  = 1 % µ  = 2 % µ  = 3 % 

N = 1    
D =0.050 77.46 (+13.4%) 82.02 (+20.0%) 86.16 (+26.1% ) 
D =0.071  87.57 (+28.2%)  
D =0.087   97.74 (+43.0%) 

N = 9 ; B=0.2    
D =0.02 81.41 (+19.1%) 81.80 (+19.7%) 81.77 (+19.7%) 
D =0.03 84.20 (+23.2%) 89.19 (+30.5%) 90.37 (+32.3%) 
D =0.05 86.76 (+27.0%) 97.27 (+42.4%) 101.98 (+49.2%) 

 
reduction ratio versus bandwidth for different 
number of TMDs. We can observe that the 
optimum bandwidth increases with the number of 
TMDs but will converge to a value of about 0.18 
as the number is equal to or larger than 9. A large 
bandwidth means that some of the frequencies are 
far away from the structural frequency and will 
lower the effectiveness of the MTMD. On the 
other hand, a small bandwidth implies the 
characteristics of the MTMD are similar to those 
of a single TMD and will lose the benefits of 
MTMD. Therefore, the bandwidth should be 
properly selected in the MTMD’s design to ensure 
better performance. For design purposes we take 
95% of the optimum reduction ratio as the design 
target, and the corresponding larger and smaller 
bandwidths are the upper and lower bounds, 
respectively. The suggested values are shown in 
Table 1.  
 
(c) Effect of the number of TMDs and mass ratio 
 
      An odd number of TMDs is often used in the 
MTMD system, the central frequency is tuned 
around the structural frequency and the others are 
equally spaced on both sides of the central one. 
From the results in Fig. 7, the optimum number is 
around 9. The use of the larger number of TMDs 
does not increase the performance significantly. 
There also may be difficulties to tune the 
frequencies precisely for small spacing of the 
frequencies. 

       Earlier discussions of design parameters of 
the MTMD are based upon 1% total mass ratio. It 
is known that the performance of MTMD 
increases with the mass ratio and the 
corresponding optimum damping ratio also 
increases. To study this effect, we use 9 TMDs 
and bandwidth of 0.2 for the analysis. The 
relationship between response reduction ratio and 
damping ratio for different mass ratios is shown in 
Fig. 8. The results indicate that 2% damping ratio 
can yield a good performance when the mass ratio 
falls between 1 % and 3%, but a higher damping 
ratio (about 5%) is more suitable for a mass ratio 
of 4%. Another finding is that the increase of 
response reduction ratio is significant when the 
mass ratio is raised from 1% to 2 or 3%, but it is 
not obvious when 4% mass ratio is used. For 
design purposes, the appropriate value of the 
upper bound of total mass ratio is about 3%.  
 
(d) Robustness 
 
      Fig. 9 shows the comparison of the robustness 
between the MTMD and the single TMD. The 
definition of the offset used here is the ratio of the 
difference between the tuned and peak frequencies 
to the peak frequency. The results show that the 
MTMD is better than a single TMD but the 
difference is not significant. The reason is that the 
response is relevant to the enclosed area bounded by 
the displacement spectrum and frequency, and the 
change of this area due to mistuning is not sensitive. 
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Furthermore, the structural frequency in the vertical 
direction will not change with the wind speed and 
the mistuning problem is not so serious. However, 
this effect will become more important in the 
torsional direction and will be discussed later. 
 
(2) Performance of the MTMD for Suppressing 

Torsional Buffeting Response 
 
      There are some structural characteristics in the 
torsional direction that are different from those in 
the vertical direction. First, the effective damping in 
the torsional direction decreases with wind speed 
and may induce flutter. Second, the effective 
frequency also changes with wind speed and the 
tuning frequencies of MTMD become more 
important. These relationships between wind speed, 
the effective damping, and the effective frequency 
for a typical bridge are shown in Fig. 10.  
 
(a) Effect of damping ratio and bandwidth 
 
      With 1% mass ratio, the relationships between 
performance and damping ratio corresponding to 
30m/s and 60m/s wind velocities are shown in Figs. 
11-12, respectively. We can see that a 2% damping 
ratio for the MTMD can yield a good performance 
in all cases. This suggested damping ratio is the 
same as that in the vertical direction. Therefore, we 
can conclude that the optimum damping ratio is 
independent with the effective frequency of the 
structure. 
      The results in Figs. 11-12 also show that the 
choice of bandwidth is nearly independent of wind 
velocity (or effective damping ratio), and a smaller 
bandwidth often results in better performance. 
However, a smaller bandwidth may cause a tuning 
problem for the MTMD. The reason is that the 
frequency interval of the MTMD may be too small to 
be tuned precisely. For this concern it seems that the 
best choice is to use 3 TMDs with a bandwidth of 0.1 
and a damping ratio of 2%. The other choice is to use 
9 TMDs with a bandwidth of 0.2 and a damping ratio 
of 2% that also produce a good performance. 
However, the choice of the bandwidth is also 
dependent on the robustness that may be the 
dominating factor and will be discussed in the next 
section. 
 
(b) Robustness  
 
      The effective frequency of the bridge subjected 
to wind excitation will be changed by the 
aerodynamic stiffness. For this reason it is not 

possible to exactly tune the TMD frequency to the 
frequency of the peak response for each wind speed 
and there will be some offset to the peak value. 
Furthermore, the natural frequency discrepancies 
between the real structure and the prototype are, in 
practice, inevitable. Therefore, the offset should be 
taken into account for determining the design 
parameters to ensure the MTMD performance. 
Because the total number of TMDs and bandwidth 
will affect the robustness, these factors are 
investigated in the following analysis. 
      To simplify the study, 1% mass ratio and 2% 
damping ratio are used in this analysis. At 60 m/s 
wind speed, the relationships of response reduction 
ratio and offset for 3, 5, 9, and 13 TMDs are shown 
in Fig. 13. For 3 TMDs, the curve of bandwidth of 
0.1 is a bell-like shape; the response reduction ratio 
reaches the peak (57%) at zero offset and reduces 
rapidly with the increase of offset. In this case, 
robustness is similar to that of a single TMD and the 
allowable offset is small. As a bandwidth of 0.2 is 
used, the response reduction ratio fluctuates with 
offset and produces three peaks. The allowable 
offset is larger but the maximum response reduction 
ratio drops to 53%. As the bandwidth is increased to 
0.3 and 0.4, the peaks are more obvious and the 
allowable offset is larger but the maximum response 
reduction ratio is smaller. This explains that the 
robustness increases with the bandwidth but the 
performance decreases with it. To satisfy both 
robustness and performance requirements, a 
bandwidth of 0.2 seems to be a best value for 3 
TMDs. For 5 TMDs, the relationship between offset 
and response reduction ratio is similar to that of 3 
TMDs. In this case, the curve of bandwidth of 0.2 is 
more flat and the response reduction ratio is about 
55% which is slightly larger than that of 3 TMDs. 
We then can conclude that for a given bandwidth 
more TMDs are more robust and produce better 
performance. This conclusion can be verified 
further for 9 or 13 TMDs in which the performance 
of a bandwidth of 0.2 is even better. However, the 
comparison of the results between 9 and 13 TMDs 
indicates that the maximum performance is 
achieved as 9 TMDs are used. The performance of 
13 TMDs is almost the same as that of 9 TMDs. In 
the case of 9 or 13 TMDs, another finding is that the 
allowable offset is almost a half of the bandwidth. 
For design procedures, the allowable offset should 
be determined first and then the bandwidth. Due to 
the change of the effective frequency with wind 
velocity, the allowable offset △ S should be 
controlled by the following: 
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Δ S =
n n

n
s f

s

−
                                                  (38) 

where ns  is the structural frequency, nf is the 
flutter frequency. After the offset is evaluated from 
the above equation, the required bandwidth is twice 
of the offset. 
      From the comparison of the results, shown in 
Fig. 14, we can find that the MTMD with 9 TMDs is 
superior to the usual single TMD.  
 
(c) Effect of the number of TMDs and mass ratio 
 
       The effect of the number of TMDs on the 
performance of the MTMD can be clearly explained 
in Fig. 13. The results indicate that the required 
minimum number of TMDs to obtain best 
performance in the torsional direction is 9, which is 
the same as that in the vertical direction.  
      The performance of the MTMD definitely 
increases with mass ratio but it does not gain much 
at the low effective damping ratio as shown in Fig. 
15. For design purposes, a 1% mass ratio can obtain 
a good performance and is recommended in the 
torsional direction. Also, Fig. 15 can be a useful tool 
to predict the response reduction ratio when the 
effective damping ratio of the bridge is known. 
 
(d) Increase of flutter velocity 
 
      The critical velocity of the typical bridge 
without dampers is 68.33 m/s. A single TMD and 9 
TMDs with various combinations of damping ratios 
and mass ratios are analyzed to study the increase of 
the flutter velocity by the addition of the tuned mass 
dampers. The frequency of the central TMD is 
tuned to the natural frequency of the first torsional 
mode.  The results, illustrated in Table 2, indicate 
that the increase of flutter velocity is about 13-43% 
for a single TMD and 19-49% for the MTMD. 
Generally the flutter velocity increases with 
damping and mass ratios. For a fixed damping ratio, 
a higher mass ratio yields a higher flutter velocity in 
the case of a single TMD. However, in the case of 
MTMD with a fixed damping ratio, the increase of 
flutter velocity due to the increase of mass ratios is 
not obvious. In this case, a higher damping ratio 
should be used for a higher mass ratio to efficiently 
raise the flutter velocity. Comparison of a single 
TMD and the MTMD, both designed with the same 
mass, shows that the MTMD is more effective than 
a single TMD for increasing the structure’s 
stability.  
       It should be noted that the results shown in 

Table 2 are based on the assumption that the 
frequency of the central damper is tuned to the 
natural frequency of the first torsional mode. If the 
increase of torsional stability is the major concern, 
this frequency should be tuned less. A suitable value 
for achieving this purpose is the flutter frequency 
without using TMD.  
 

6. Design Recommendation of MTMD 
 
        A summary of the parametric analysis on the 
MTMD in the vertical and torsional directions can 
be stated as follows: 
      (1)For the vertical MTMD, the suggested 
frequency of the central damper is the frequency of 
the first vertical mode of the structure. For the 
torsional MTMD, the suggested tuning frequency of 
the central damper is the average between the first 
torsional mode frequency and the flutter frequency 
of the bridge without using TMD. If the increase of 
torsional stability is the major concern, this 
frequency can be simply tuned to the flutter 
frequency without using TMD. 
      ()For both the vertical and torsional MTMD, the 
suggested number of dampers is 9. 
      For the vertical MTMD, the total mass is 
suggested to be 2% or more to ensure the vertical 
performance and the corresponding damping ratio is 
2%. For the torsional MTMD, the mass is suggested 
to be 1% which is sufficient for obtaining good 
performance and the corresponding damping ratio is 
also 2%. 
      For the vertical MTMD, the suggested 
bandwidth is shown in Table 1. For the torsional 
MTMD, the suggested bandwidth is the larger one 
between the values obtained from Eq. (38) and 
Table 1. 
 

7.  Concluding Remarks 
 
      A parametric analysis of the MTMD used for 
suppressing aerodynamic response of long-span 
bridges is presented. Through this analysis the 
suggested design parameters including damping, 
mass, number, and bandwidth of the MTMD are 
proposed. The results show that the MTMD is more 
effective than an optimized single TMD for 
suppressing buffeting response and increasing the 
critical flutter speed. With a proper design, the use 
of MTMD can be advantageous to improve the 
aerodynamic behavior of a long-span bridge. The 
characteristics of the MTMD used in the vertical 
and torsional directions are almost the same except 
the tuning frequency and bandwidth that are 
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affected by the aerodynamic stiffness. The bridge 
and the aerodynamic coefficients used here are 
chosen arbitrarily, due to the fact that these 
structural properties and aerodynamic effects have 
been normalized. Therefore, the values 
recommended in this paper are still useful for other 
bridges. It should be mentioned that the relative 
displacement between TMD and the structure is not 
included in this study; if this displacement is not 
allowable, the suggested damping ratio of TMD 
should be increased. 
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